Nonparametric Inference for Time-varying Coefficient Quantile Regression
نویسنده
چکیده
The paper considers nonparametric inference for quantile regression models with time-varying coefficients. The errors and covariates of the regression are assumed to belong to a general class of locally stationary processes and are allowed to be cross-correlated. Simultaneous confidence tubes (SCT) and integrated squared difference tests (ISDT) are proposed for simultaneous nonparametric inference of the latter models with asymptotically correct coverage probabilities and type I error rates. Our methodologies are shown to possess certain asymptotically optimal properties. Furthermore, we propose an information criterion which performs consistent model selection for nonparametric quantile regression models of non-stationary time series. For implementation, a wild bootstrap procedure is proposed which is shown to be robust to the dependent and non-stationary data structure. Our method is applied to studying the asymmetric and time-varying dynamic structures of the US unemployment rate since the 1940s.
منابع مشابه
Sequential design for nonparametric inference
Performance of nonparametric function estimates often depends on the choice of design points. Based on the mean integrated squared error criterion, we propose a sequential design procedure that updates model knowledge and optimal design density sequentially. The methodology is developed under a general framework covering a wide range of nonparametric inference problems, such as conditional mean...
متن کاملNew Efficient Estimation and Variable Selection Methods for Semiparametric Varying-coefficient
The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varying-coefficient functions and the...
متن کاملNew Efficient Estimation and Variable Selection Methods for Semiparametric Varying-coefficient Partially Linear Models.
The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varying-coefficient functions and the...
متن کاملNew Efficient Estimation and Variable Selection Methods for Semiparametric Varying-coefficient Partially Linear Models By
The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varyingcoefficient functions and the ...
متن کاملSemiparametric Quantile Regression Estimation in Dynamic Models with Partially Varying Coefficients∗
We study quantile regression estimation for dynamic models with partially varying coefficients so that the values of some coefficients may be functions of informative covariates. Estimation of both parametric and nonparametric functional coefficients are proposed. In particular, we propose a three stage semiparametric procedure. Both consistency and asymptotic normality of the proposed estimato...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014